Ca²⁺-CHANNEL AGONIST BAY K8644 MIMICS 1,25(OH)₂-VITAMIN D₃ RAPID ENHANCEMENT OF Ca²⁺ TRANSPORT IN CHICK PERFUSED DUODENUM

Ana R. de Boland, Ilka Nemere and Anthony W. Norman*

*Division of Biomedical Sciences and Department of Biochemistry, University of California, Riverside, CA 92521

Received November 20, 1989

To further understand the molecular mechanism by which 1,25(OH)₂-vitamin D₃ [1,25(OH)₂D₃] rapidly stimulates intestinal calcium transport (termed "transcaltachia"), the effect of the calcium channel agonist BAY K8644 was studied in vascularly perfused duodenal loops from normal, vitamin D-replete chicks. BAY K8644, 2 uM, was found to stimulate ⁴⁵Ca²⁺ transport from the lumen to the vascular effluent to the same extent as physiological levels of 1,25(OH)₂D₃. The sterol and the Ca²⁺ channel agonist both increased ⁴⁵Ca²⁺ transport 70% above control values within 2 min and 200% after 30 min of vascular perfusion. The effect of the Ca²⁺ channel agonist was dose dependent. Also, 1,25(OH)₂D₃-enhanced transcaltachia was abolished by the calcium channel blocker nifedipine. Collectively, these results suggest the involvement of 1,25(OH)₂D₃ in the activation of basal lateral membrane Ca²⁺ channels as an early effect in the transcaltachic response. © 1990 Academic Press, Inc.

Vitamin D₃ acting through its daughter metabolite 1,25-dihydroxy-vitamin D₃ [1,25(OH)₂D₃] is the major regulator of Ca²⁺ homeostasis and it is now considered to be a true steroid hormone acting via intranuclear receptor binding and regulation of gene transcription (1). However, several studies have demonstrated a 1,25(OH)₂D₃-mediated rapid acute uptake of Ca²⁺ in both classical and non classical target tissues (2-4). The perfused duodena of normal (vitamin D replete) chicks was also shown to respond very rapidly to physiological levels of the seco-sterol, increasing Ca²⁺ transport from the brush border to the basal lateral membrane of the epithelial cells (5,6). This rapid response, termed "transcaltachia", is evidenced only when 1,25(OH)2D3 is introduced in the vascular perfusate or basal lateral membrane surface but not when the seco-sterol is introduced to the lumen or brush border membrane surface (5). This sidedness may reflect the existence of a specific receptor for 1,25(OH)₂D₃ at the basal lateral membrane as has been reported for other steroid hormones (7). The acute effect of 1,25(OH)₂D₃ on intestinal Ca²⁺ transport is not affected by a wide variety of agents including actinomycin D, but can be abolished by colchicine (an anti-microtubule drug) and leupeptin (a lysosomal cathepsin B-inhibitor) (8,9). It has been proposed that 1,25(OH)₂D₃ increases intestinal Ca²⁺ transport through a vesicular pathway: internalization of Ca²⁺ in endocytic vesicles, fusion of the vesicles with lysosomes and movement of the lysosomes (along microtubules) to the basal lateral membrane where exocytosis of the contents completes the transport process (10). The purpose of the present study was to further investigate the possible

mechanism(s) by which 1,25(OH)₂D₃ mediates transcaltachia. We have evaluated the possibility that activation of intestinal membrane Ca²⁺-channels is involved in the early response to the sterol.

MATERIALS AND METHODS

Materials

⁴⁵CaCl₂ (1 Ci/m mol) was obtained from New England Nuclear, Boston, MA. BAY K8644 was from Calbiochem, La Jolla, CA. Nifedipine was from Sigma Chemical Co., St. Louis, MO. All other chemicals used were reagent grade.

Animals

White Leghorn cockerels (Lakeview, CA) were obtained on the day of hatch and maintained on a vitamin D-supplemented diet (O.H. Kruse Groting and Milling, Ontario, CA) for 4-5 weeks (300-500 g). When vitamin D-deficient chicks were employed, they were raised for 4 weeks on a rachitogenic diet (11).

Intestinal Ca²⁺ Transport Measurements

Measurements of Ca²⁺ transport were carried out in perfused chick duodena essentially as previously described (5). Briefly, chicks were anesthetized with chloropent (0.3 ml/100 g), the duodenal loop was exposed, and the three pairs of blood vessels branching off from the celiac artery ligated prior to cannulation of the celiac artery itself. The arterial perfusion was initiated with modified Gey's Balanced Salt Solution (GBSS) containing 27 mM NaHCO₃-5.6 mM D-glucose and oxygenated with 95% O₂/5% CO₂ at a flow rate of 2 ml/min. An auxiliary pump was used for the introduction of vehicle (ethanol) or test substances plus albumin (0.125% w/v) to the vascular perfusate at a rate of 0.25 ml/min. The intestinal lumen was then flushed and filled with GBSS containing ⁴⁵Ca²⁺ (5 uCi/ml). The intestinal preparation was kept at 27°C and moist under layers of saline-dampened cheese cloth. Each duodenum was perfused with control medium for 20 min after filling the lumen with ⁴⁵Ca²⁺ to establish basal ⁴⁵Ca transport rates. The tissue was then exposed to test substances or re-exposed to control medium for an additional 30 min. The vascular perfusate was collected at 2 min intervals during basal and treatment periods for measurements of ⁴⁵Ca²⁺ levels. The results are expressed as the ratios of the ⁴⁵Ca²⁺ appearing in the control 20 min perfusate divided by the ⁴⁵Ca²⁺ appearing over the subsequent 30 min test period.

RESULTS

The effects of the Ca²⁺-channel activator, BAY K8644 on intestinal Ca²⁺ transport in normal, vitamin D-replete chicks was investigated. Fig. 1 shows that, similarly to physiological levels of 1,25(OH)₂D₃, vascular perfusion of duodenal loops with BAY K8644 stimulates ⁴⁵Ca²⁺ transport from the lumenal compartment to the venous effluent. A 70% increase above controls was observed after only 2 min of exposure to the agonist. Within 10 min ⁴⁵Ca²⁺ in the venous effluent rose 140% from controls, reaching a plateau at 30 min with a 200% increase with respect to controls. BAY K8644-stimulation of ⁴⁵Ca²⁺ transport was dose-dependent (Fig. 2). Treatment with 0.5 uM and 1 uM BAY K8644 resulted in ⁴⁵Ca²⁺ transport levels that were lower than those in duodena exposed to 130 pM 1,25(OH)₂D₃ (20% and 45% increase at 2 min, and 50% and 100% increase at 30 min with respect to controls for 0.5 uM and 1 uM BAY K8644, respectively). The highest concentration of agonist tested (2 uM) resulted in ⁴⁵Ca²⁺ transport levels similar to those obtained with 130 pM 1,25(OH)₂D₃.

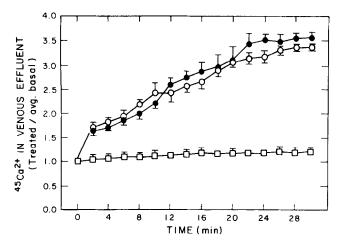


Figure 1. Effect of 1,25(OH)₂D₃ and BAY K8644 on the appearance of ⁴⁵Ca²⁺ in the venous effluent of perfused duodena from vitamin D-replete chicks. Each duodenum, filled with ⁴⁵CaCl₂ (5 uCi/ml) in GBSS, was vascularly perfused (27°C) for the first 20 min with control medium (GBSS containing 0.125% BSA and 0.05 ul/ml ethanol) and then with 130 pM 1,25(OH)₂D₃ (O); 2 uM BAY K8644 (●) or control medium (□). Values are the mean + SD of 4 duodena for each treatment.

In order to determine if the Ca²⁺-agonist affects ⁴⁵Ca²⁺ transport when presented to the brush border membrane surface of the intestinal epithelial cells, 2 uM BAY K8644 was placed in the luminal medium together with ⁴⁵CaCl₂. Fig. 3 shows that, analogously to 1,25(OH)₂D₃, introduction of the Ca²⁺-channel agonist into the lumenal compartment failed to elevate ⁴⁵Ca²⁺ transport above control levels. Also, the Ca²⁺-channel agonist (2 uM) failed to stimulate ⁴⁵Ca²⁺ transport when offered to either the vascular or lumenal compartment of vitamin D-deficient chicks for up to 30 min. In agreement with previous observations (2),

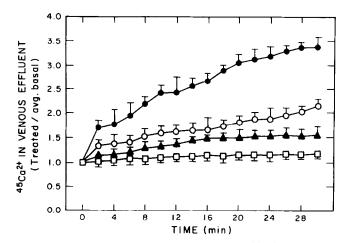


Figure 2. Dose-response effects of BAY K8644 on duodenal ⁴⁵Ca²⁺ transport. Experimental conditions were as described in Fig.1. During the treatment phase, the duodena were perfused with BAY K8644; 0.5 uM (♠); 1 uM (O), 2 uM (♠) or control medium (□). Values are the mean + SD of 3 duodena for each treatment.

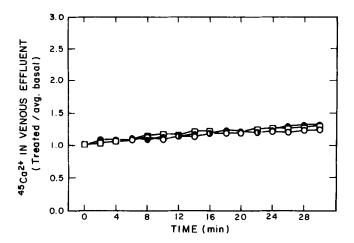


Figure 3. Lack of effect of lumenal BAY K8644 on enhanced appearance of $^{45}\text{Ca}^{2+}$ in the venous effluent of perfused duodena. Basal perfusion conditions were described in Fig. 1. The lumen of the duodenum was filled with $^{45}\text{CaCl}_2$ in GBSS containing either 2 uM BAY K8644(\bullet); 130 pM 1,25(OH)₂D₃ (O) or 0.05 ul/ml ethanol (\square). Values are the mean + SD of 3 duodena for each treatment.

1,25(OH)₂D₃ was also without effects on ⁴⁵Ca²⁺ transport when offered either to the basal lateral membrane or brush border membrane surfaces of vitamin D-deficient chick intestine (data not shown).

Exposure of the basal lateral membrane surface to 1 uM nifedipine, a calcium-channel antagonist, blocked the increase in calcium transport elicited by vascular perfusion of duodena with 1,25(OH)₂D₃ (Fig. 4).

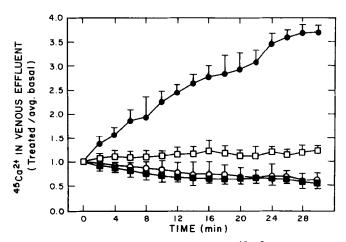


Figure 4. Suppression of 1,25(OH)₂D₃-induced duodenal ⁴⁵Ca²⁺ transport by the calcium-channel blocker nifedipine. Experimental conditions were as described in Fig. 1. During the treatment phase, duodena were vascularly perfused with 130 pM 1,25(OH)₂D₃ (•); 1,25(OH)₂D₃ + 1 uM nifedipine (O); 0.05 ul/ml ethanol () or 0.05 ul/ml ethanol + 1 uM nifedipine (). Values are the mean + SD of 3 duodena for each treatment.

DISCUSSION

The results of the present study provide the first evidence indicating that the rapid stimulation of intestinal calcium transport (transcaltachia) in normal vitamin D₃-replete chicks by 1,25(OH)₂D₃ is mediated by an activation of basal lateral membrane Ca²⁺-channels. The Ca²⁺-channel agonist BAY K8644 mimicked the effects of the sterol on the transcaltachic response and analogously to 1,25(OH)₂D₃, enhanced calcium transport was only observed when the basal lateral membrane surface was exposed to the sterol by vascular perfusion. In addition, the dihydropyridine nifedipine completely abolished the rapid increase in ⁴⁵Ca²⁺ transport induced by 1,25(OH)₂D₃, further suggesting that the vitamin D-metabolite activated voltage-operated Ca²⁺-channels. In agreement with these observations, the existence of Ca²⁺-channels in basal lateral membranes from rabbit ileal epithelial cells has been recently demonstrated (12).

The acute stimulation of duodenal calcium transport evoked either by BAY K8644 or 1,25(OH)₂D₃ was not observed in vitamin D-deficient chicks. This is in agreement with previous observations (13,14) in which 1-2 h were required to detect enhanced Ca²⁺ transport after administration of 1,25(OH)₂D₃ to rachitic chicks and may reflect the steroid-hormone receptor-mediated actions of 1,25(OH)₂D₃ that are known to occur in the intestine (1). It has been shown that a rise in the intracellular Ca²⁺ concentration triggers exocytosis and activation of the plasma membrane Ca²⁺-ATPase and Na⁺-Ca²⁺ exchanger (15). It is conceivable that the early effects of 1,25(OH)₂D₃ on Ca²⁺-channel activity may cause a transient increase in intracellular calcium, that in turn would activate exocytosis of Ca²⁺-containing vesicles as well as Ca²⁺ efflux by the Ca²⁺-pump and Na⁺-Ca²⁺ exchanger resulting in a net increase of Ca²⁺ transport. Further work on the mechanistic aspects of 1,25(OH)₂D₃ effects on intestinal membrane Ca²⁺ channel activity is currently in progress.

ACKNOWLEDGMENTS

This work was supported in part by USPHS grant DK-09012-025 (AWN); additional funds for this research were provided by National Institutes of Health Grant FO5 TW 04214 (awarded to Dr. Ana R. de Boland).

REFERENCES

- 1. Minghetti, P.P. and Norman, A.W. (1988) FASEB J. 2, 3043-3053.
- 2. Nemere, I. and Szego, C.M. (1981) Endocrinology 108, 1450-1452.
- 3. de Boland, A.R. and Boland R. (1987) Endocrinology 120, 1858-1864.
- 4. Baran, D.T. and Kelly, A.M. (1988) Endocrinology 122, 930-934.
- 5. Nemere, I., Yoshimoto, Y. and Norman, A.W. (1984) Endocrinology 115, 1476-1483.
- 6. Nemere, I. and Norman, A.W. (1986) Endocrinology 119, 1406-1408.
- Baulieu, E.E., Godeau, F., Schorderet, M. and Schorderet-Slatkine, S. (1978) Nature 275, 593-598.
- 8. Nemere, I. and Norman, A.W. (1987) J. Bone Mineral Res. 2, 99-107.
- 9. Nemere, I. and Norman, A.W. (1987) J. Bone Mineral Res. 2, 167-169.
- 10. Nemere I., Leathers, V. and Norman, A.W. (1986) J. Biol. Chem. 261, 161096-16114.
- 11. Norman, A.W. and Wong, R.G. (1972) J. Nutr. 102, 1709-1718.
- Homaidan, F.R., Donowitz, M., Weiland, G.A. and Sharp, G.W.G. (1989) Am. J. Physiol.. 257, G86-G93.

- Spencer, R., Charman, M., Wilson, P.W. and Lawson, D.E.M. (1978)Biochem. J. 170, 93-101.
- Morrisey, R.L., Zolock, D.T., Bickle, D.D., Empson Jr., R.N. and Bucci, T.J. (1978) Biochim. Biophys. Acta 538, 23-33.
- Campbell, A.K. Intracellular calcium: Its universal role as regulator (1983) John Wiley & Sons, N.Y. (particularly see pp. 198 & 327).